
Distributed Consistency with
CRDTs

- Kishan Sagathiya, @kishansagathiya

Software Engineer at Protocol Labs,
Member of IPFS

Conflict free

Replicated

Data-Types

Modified by many, but eventually
consistent

Distributed
Databases

Modified by many, but eventually
consistent

Collaborative Text
Editors

- So, Operational Transformation requires a server

- Can we do it without a server? YES

https://peerpad.net/

CRDTs

https://peerpad.net/

What have people built?

- Redis: distributed, highly available and scalable in-memory database
- Automerge: A JSON-like data structure (a CRDT) that can be modified

concurrently by different users, and merged again automatically.
- Orbitdb: Peer-to-Peer Databases for the Decentralized Web
- Riak: decentralized datastore
- PeerPad: is a real-time collaborative text editor
- TomTom GPS uses it for data synchronization
- Teletype for atom: collaborate on code in real time
- Chat in League of Legends
- Cosmos DB by Microsoft

And other things….

CRDTs are data types which provide strong
eventual consistency among different replicas in
a distributed system by requiring some properties
from the state and/or the operations applied to
modify it.

Strong Eventual Consistency

If two replicas have received the same updates,
their state will be the same

State based CRDTs (Convergent CRDTs)

Operation based CRDTs (Commutative CRDTs)

Operation based CRDTs

Operations that modify states must be commutative

Operation based CRDTs
Exactly once delivery semantics

State based CRDTs

In state-based CRDTs, the states in different replicas and
different moments form a monotonic join semilattice.

- less than or equal to

a≤b or b≤a

- incomparable

a ∥ b

- join

a∨b

- An order is a binary relation ≤ on a set S, written <S,≤>

- examples

less than or equal to 2 ≤ 4

descendent-of daughter ≤ mother

- Total Order

Comes-before order

- Partial Order
Seattle ≤ US and Brooklyn ≤ US

Seattle ∥ NYC and Bronx ∥ Mumbai

- A vector clock timestamp is a collection of logical timestamps for all the nodes
or processes we’re interested in.

(1,3,5) ≤ (1,4,6)
(2,7,2) ≤ (8,7,3) (1,4,6) ∥ (2,7,2)

Join
For a set S, an order <S,≤>, and
two elements a,b∈S, the join of a
and b (written a∨b) is a least
upper bound of S according to our
order <S,≤>

- A join semilattice is an order <S,≤> for
which there exists a join x∨y for any
x,y∈S

Joins obey three laws

- Commutativity: a∨b=b∨a
- Associativity: (a∨b)∨c=a∨(b∨c)
- Idempotence: a∨a=a

- Joins tend to move “upwards”, so do merges of
state-based CRDTs tend to converge on the One True
Value

One True Value to Unite Them All

Convergent CRDTs

- State (elements of set)
- merge() function

- merge() is max() here
- Can we use sum()?

- System: set of available state at the moment

[2, 5, 7]

- Background set: all integers
- Value of the System: upper bound of corresponding

semilattice diagram (consistent value)

Value([2,5,7])=7

- The order of merges doesn’t matter. This is guaranteed by
the associativity and commutativity of joins.

- It doesn’t matter how many times we repeat a particular
merge. This is guaranteed by the idempotence of joins.

Why do we care about this ?

Implementing a CvRDT

counter with a simple interface:

- increment(): increment the counter
- value(): gets the value of the counter

- 3 nodes X, Y, Z
- Set includes all integers
- merge() is max()

Imagine the following history:

- Start with 0 on all nodes
- Node 1 increments 3 times
- Node 2 increments 2 times
- Node 3 increments 1 time

What should be the final result ?

Imagine the following history:

- Start with 0 on all nodes
- Node 1 increments 3 times
- Node 2 increments 2 times
- Node 3 increments 1 time

What should be the final result ?

 6

- Weren’t we supposed to get 6?

- Let’s use a better approach

- Instead of integers use vector of integers
- Value: sum of all elements in the vectors

Last example becomes:

- X: (3, 0, 0)
- Y: (0, 2, 0)
- Z: (0, 0, 1)

- Create data-types that follow these
requirements

References

- http://jtfmumm.com/blog/2015/11/17/crdt-primer-1-defanging-order-theory/
- http://jtfmumm.com/blog/2015/11/24/crdt-primer-2-convergent-crdts/
- CRDTs: Consistency without concurrency control

https://arxiv.org/pdf/0907.0929.pdf
- "CRDTs Illustrated" by Arnout Engelen

https://www.youtube.com/watch?v=9xFfOhasiOE
- CRDTs and the Quest for Distributed Consistency by Martin Kleppmann

https://www.youtube.com/watch?v=B5NULPSiOGw
- Paxos Simplified https://www.youtube.com/watch?v=SRsK-ZXTeZ0
- An extensive list of articles here https://github.com/ipfs/research-CRDT/
- https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

http://jtfmumm.com/blog/2015/11/17/crdt-primer-1-defanging-order-theory/
http://jtfmumm.com/blog/2015/11/24/crdt-primer-2-convergent-crdts/
https://arxiv.org/pdf/0907.0929.pdf
https://www.youtube.com/watch?v=9xFfOhasiOE
https://www.youtube.com/watch?v=B5NULPSiOGw
https://www.youtube.com/watch?v=SRsK-ZXTeZ0
https://github.com/ipfs/research-CRDT/
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

